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1   Abstract 
The goal of the project was to develop computational models that helped assess operator 
performance during cyberoperations. Cyberoperation agents with good user models can 
be deployed to simultaneously monitor the effects of cyberoperations on several users. 
This in turn increases the trust in and success of these operations. 

A key obstacle to these user models was the limitations of the existing inference 
algorithms used to create them. These algorithms did not scale well in domains that 
extended over time, contained uncertainty over identity, included large numbers of 
entities and involved reasoning about the beliefs of other agents. Cyberoperations have 
all these properties and thus there was a large gap between the needs of these operations 
and the abilities of existing inference mechanisms. 

In this project we developed inference mechanisms that made significant progress 
towards overcoming most of these obstacles. The key to our approach was to find a way 
to integrate general inference algorithms together with specialized methods for dealing 
with time, identity, large numbers of objects and beliefs. This approach was 
implemented within the Polyscheme cognitive architecture. 

This allowed us to achieve several results. At the level of algorithms, these involved 
significant speedups to existing approaches that were empirically confirmed. These 
advances enabled us to work with Assured Information Systems to create a 
cyberoperations agent that was able to manipulate a users system while reliably being 
able to detect whether the user detected the intrusion. 

The project led to three transitions. Much of the technology developed here was key to 
the award of grants for the following three projects:  1. A MURI award for a project 
headed by Nicholas Cassimatis, the PI for the present project, to use these user modeling 
methods to improve human-computer interactions, 2. A DARPA SIBR with TracLabs 
that used these methods to monitor the operation of robots. 3. An ONR SIBR also with 
TracLabs that used these methods to greatly improve the ability of robots and understand 
the goals of the users they were interacting with. 
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2 Introduction 
The goal of the project was to develop computational models that helped assess operator performance 
during cyberoperations. Cyberoperation agents with good user models can be deployed to simultaneously 
monitor the effects of cyberoperations on several users. This in turn increases the trust in and success of 
these operations. 

A key obstacle to these user models was the limitations of the existing inference algorithms used to create 
them. These algorithms did not scale well in domains that extended over time, contained uncertainty over 
identity, included large numbers of entities and involved reasoning about the beliefs of other agents. 
Cyberoperations have all these properties and thus there was a large gap between the needs of these 
operations and the abilities of existing inference mechanisms. 

To address these problems, we observe that each of the properties we seek in a cyberoperations agent is 
exhibited by some algorithm, but often at the cost of one of the other properties. For example, many search 
algorithms and many probabilistic inference algorithms are general insofar as a wide variety of problems 
can be reformulated so that these algorithms can solve them. They are flexible in that when small changes 
are made to the knowledge bases or models these methods use, they correctly update their inferences. 
However, for larger problems, these algorithms become prohibitive in time and/or space. They thus trade 
efficiency for scalability. Reactive and behavior-based systems trade generality for speed and dynamism. 
These systems can quickly adapt their behavior to new information about the environment, but are 
generally not capable of making many kinds of complex inferences and plans that many reasoning or 
planning algorithms can. Approaches that are based on more complex and structured knowledge 
representation schemes such as frames [1], scripts [2] and cases [3] make the same tradeoff. They can 
make inferences and plans that would take more general algorithms too much time. However, frames, 
scripts and cases often do not work in situations that are even slightly different from those for which they 
were created. 

Because of such tradeoffs, it has been difficult to create a single system that exhibits all the desired 
characteristics of intelligent systems. One approach to this problem is to create systems based on hybrids 
of these algorithms. This paper presents a cognitive architecture, called Polyscheme, for implementing and 
executing such hybrids. Polyscheme's design is motivated by some aspects of human cognitive 
architecture and several computational considerations. Many methods of integration involve loosely- 
coupled collections of modules or hybrids of only a small fixed set of algorithms. Although Polyscheme 
includes modules that can encapsulate algorithms, it also enables algorithms to be implemented through 
sequences of "attention fixations" (each involving all the modules) called "focus traces". By interleaving 
these focus traces, Polyscheme can execute hybrids of algorithms where each step of each encapsulated 
algorithm can potentially be assisted by the others. As explained below, this form of integration enables 
systems that have previously not been feasible. 

3 Unifying principles 
We can motivate an architecture for integrating hybrids of multiple classes of algorithms by recognizing 
that even though they are based on very different computational formalisms, they share many common 
elements. 

The following are some formal preliminaries. Strings of the form P( ... x, .... I.M) are called 
propositions. They say that relation P holds over arguments x, during temporal interval / in world w. Any 
kind of entity can be an argument. A world is a history (past, present and future) of states. P/w refers to a 
proposition like P except for having vv is its world argument. £ ("eternity") is the temporal interval such 
that all other temporal intervals occur during it. R is the real world. Terms can refer to the same object. 
This is indicated with Same(x,y.E,w). T, F and U("unknown") are truth values for propositions. 

Propositions are used only to characterize certain aspects of Polyscheme and as an interlingua between 
Polyscheme modules. Polyscheme is not a "logical" system insofar as it can use non-logical data structures 



and its computation is not predominantly deductive or confined to manipulating formulae in some logical 
language. 

3.1   Common functions 
It is possible to characterize algorithms from very different formal frameworks as executing sequences of 
common functions. In this case "function" refers not to a mathematical function, but to the purpose of an 
algorithm as in "the function of a sorting algorithm is to order the elements of a collection". These 
functions are described along with the notation we will use to refer to them. 

Store information. Given information about P's truth value, store it. Store (P, TV). 
Offer opinion. Return a truth value for a proposition. OpinionOn (P, TV). 

iird inference. Given some knowledge, infer what follows.  Forwardlnference (BK) ,   where 
BK  =   {    ...    (P,,   TV,)    ...    }, returns a list of propositions paired with their respective truth values. 

Request information/Subgoal. In order to know about something, take actions to learn about it. Given P, 
return a set of propositions such that information about their truths will help infer P's truth. 
RequestInformation(P). 

Identity. For any object, find other objects to which it might be identical. Where 0 refers to an object, 
BK is as above and W is an alternate world, return a set of objects that might be identical to 0 in W. 
Matches(   0,   BK,   W) 

Algorithm 1. Gibbs Sampling 

Represent a state variable as a proposition. Let {... P,...} be the state variables. 
Start with an assignment of truth values to those propositions {   ...    (P,/w0, TVA)...}. 
for i = 1 to MAX-SIMULATIONS: 

for each j: 
Store(Pj,   Forwardlnference({    (Pl/wj-1,   OpinionOn(PI/wi-1))    ... 

(Pj-l/wi-l,OpinionOn(Pj-l/wi-l)    ) ) 
Prob (   P   ) = the proportion of worlds, w, in which P/w is true 

Represent alternate worlds.   The ability to represent and make inferences about alternate states of the 
world is implicit in all of the above common functions since they all involve propositions with worlds as 
.nvwiiKiils 

The following are examples of how some important algorithms can be implemented using common 
functions. 

Algorithm 2. WalkSAT.  

for each proposition, P, Store (P,   Random (T, F) ) 
for i = 1 to MAX-FLIPS 
if OpinionOn (C)   = T 

Return {    ...    (Pi,   OpinionOn (Pi)    ... 
else 

with probability/?, 
Store(P,   not(OpinionOn(R))) 

otherwise 
Store (Forwardlnference (BK) . first {) ), where BK is the set of ordered pairs of each 

proposition with its truth value. 

A      variant     of     Gibbs     sampling     [4]     can      be      implemented     as      follows,      where 



Forwardlnference (BK) samples a value for P given the value of variables in its Markov blanket in 
BK. 

Stochastic local search performed, for example, by the WalkSAT algorithm [5], can be used to find 
solutions to boolean constraint satisfaction problems. Many problems (e.g., planning, diagnosis and circuit 
design) can be mapped to satisfiability problems (or weighted variants of them). When the following 
focus scheme is in place, Polyscheme performs WalkSAT for a constraint C if 
Forwardlnference (BK) returns a single ordered pair (P, TV) where P is the proposition such that 
flipping its truth value will make the most clauses in C true. 

Algorithm 3. DPLL. 

DPLL (P,tv) 
w <- world from Ps world by assuming P's truth value is rv. 
if Forwardlnference (   P/w   ) returns a contradiction 

return false, 
if all constraints in w are satisfied 

return true. 
V 4r Request Information (P/w). 
return DPLL(V,true) v DPLL(Vfalse) 

Modern variants [6, 7] of the Davis-Putnam-Logemann-Loveland [8] algorithm are among the fastest 
complete satisfiability algorithms known. DPLL performs depth-first search through the space of 
assignments of truth values to variables. As each assignment is made, DPLL performs an elaboration step 
that makes assignments that follow from the existing assignments or can be assumed without contradiction. 
This elaboration step eliminates many impossible assignments from being explored and thus in many cases 
significantly speeds search. If we assume that Forwardlnference performs the DPLL elaboration 
step, then DPLL can be reformulated as in Algorithm 3. Finally, case-based reasoning can be added to 
WalkSAT by modifying Forwardlnference above to return propositions that were true in situations 
whose similarity to the current situation exceeds some threshold. 
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Figure I. Algorithms and their focus traces. The thick arrows depict a successful path to a goal found by a hypothetical run of a search 
algorithm. The thin arrows depict other fixations explored during the search for the best path. The focus trace (C) for the hybrid of case- 
based reasoning and search is a combination of the focus traces for search (A) and case-based reasoning (B). These combine to surmount 
the problem (depicted by 'X") to simply applying the case. 

These examples illustrate how algorithms developed within very different formal frameworks can be 
executed with sequences of calls to the same five common functions. 

The fact that multiple algorithms from different subfields based on different formal frameworks can all 
be executed as sequences of common functions motivates an approach to integrating them. We can create 
hybrids of two algorithms by interleaving the sequences of common functions that execute each algorithm. 

When an algorithm performs a common function on a proposition, we say that it attends to or fixes its 
attention on this proposition. We call this event an attention fixation. Each of the algorithms described 
earlier attends to (i.e. executes a common function on) one proposition at a time 

The sequence of attention fixations an algorithm makes when it executes is called its focus trace. Focus 
traces thus provide a uniform way of characterizing the execution of algorithms from different 
computational methods. 

Interleaving the focus traces from two algorithms amounts to executing a hybrid of those algorithms. 
Specifically, an algorithm H is a hybrid of algorithms Al and A2 if H's focus trace includes fixations from 
Al and A2. Figure 1 illustrates the hybrid execution of case-based reasoning and search. The focus trace 
(lc) for the hybrid of case-based reasoning and search is a combination of the focus traces for search (la) 
and case-based reasoning (lb). 

3.2   Multiple implementation 
In each of the examples used to illustrate the common function principle, the common functions were 
implemented differently. The ability of a surprisingly diverse collection of computational methods to 
implement each of the common functions is what we call the multiple implementation principle. It is a key 
to enabling the integration of data structures and algorithms described herein. The following examples lend 
support to the multiple implementation principle. 

ring information. Both rule-based systems and neural networks store information. Rule 
matchers must keep track of which propositions they have been given as input and which they have 
asserted as the result of rule matches. Neural networks that implement content addressable memories store 
patterns using the weights of the connections between units in the network. For example, the eigenvectors 
of the matrix representing unit connections in Hopfield [9] neural networks, for example, correspond to 
patterns stored by those networks. Thus, the function of storing information is a very simple example of 
how very different algorithms and data structures can implement the same common function. 

Forward inference. Both rule-based systems and feed-forward neural networks, though based on very 
different data structures and algorithms, take inputs and produce outputs. Forward-chaining in rule-based 
system matches the left-hand side of a rule against a set of propositions and asserts new propositions. 
Likewise, many forms of neural networks can be characterized as performing inference [10]. The values of 
input and output layers of neural networks can be represented as propositions (e.g., a unit representing that 
the temperature is 25 degrees Celsius can be represented using the proposition Temperature(25)).    Thus. 



just like rule-based systems, feed-forward neural networks can be characterized as taking propositions 
(those representing the values of the input units) and producing new propositions (those representing the 
values of the output units). 

Subgoaling. Backward chaining in rule-based systems, subgoaling in logic-theorem provers and 
subgoaling in means-end planners are obvious instances of the subgoaling common function. Less 
obviously, to learn the truth values of propositions representing the output units of neural networks, one can 
perform a kind of subgoaling by finding (the truth values of propositions representing) the values of the 
input units. Even directing visual attention is a form of subgoaling. In this case, to learn about the truth 
value of a proposition representing the attribute of an object, a goal is made of directing a camera or a pair 
of eyes towards that object. 

Identity matching. Algorithms used in object recognition (e.g., Bayesian Networks, neural networks, 
support-vector machines) all are performing a kind of similarity matching by taking a visually perceived 
object and finding the most similar stored object. Case-indexing and retrieval schemes in case-based 
reasoning have the same function. 

Representing alternate worlds. Mechanisms which can make inferences about the real world can make 
inferences about hypothetical worlds. 

These examples illustrate that common functions can be implemented using computational methods from 
very different subfields of artificial intelligence 

Implementing a single common function with multiple different algorithms and data structures enables 
another kind of hybridization. Consider an algorithm. A, executed in a particular way using common 
functions Cl ... Cn. If each of the C are executed using multiple computational methods Ml ... Mn, 
then every step of the execution of algorithm A will also involve the methods M. 

As another example, one could imagine Gibbs Sampling executed using a sequence of common 
functions, each of which is executed by a neural network. Thus, although the neural network would be 
performing all the computation (in this case computing the likelihood of a proposition given its Markov 
blanket), the focus of Polyscheme can be selected in such a way that it implements Gibbs Sampling. If one 
of the Mi executing a common function is an algorithm processing new sensor information, then every step 
of inference executing using this common function would incorporate up-to-date information from the 
world. 

3.3   Cognitive self-regulation 
The common function principle shows that very different kinds of algorithms can be executed as sequences 
of the same set of common functions. How does an intelligent system implementing more than one 
algorithm decide which common functions to choose? A recurrent theme among the algorithms used to 
illustrate the common function principle is that they choose which common function to execute in response 
to metacognitive problems. This is evident in several broad classes of algorithms. 

Search algorithms choose possible worlds by assuming the truth of propositions that are unknown. If the 
truth value of a proposition is known, it is considered fixed and worlds with that proposition having the 
opposite value are not explored. In the case of constraint-based search algorithms the metacognitive 
problem is ignorance, which occurs when the truth value of a proposition is not known. In the case of 
search-based planning, the ignorance is often based on conflict since there is more than one possible next 
action to take or explore. 

Many stochastic simulation algorithms for probabilistic reasoning (e.g., Gibbs Sampling) also choose 
worlds to explore based on unknown values of a state variable. However, the level of ignorance in this case 
is somewhat reduced since a probability distribution for the state variable is known. This leads to a 
somewhat different strategy of exploring worlds: worlds with more likely propositions being true are likely 
to be explored more often. 

Case-based reasoning algorithms are also often driven by ignorance and differ from search and stochastic 
simulation algorithms by how they react to ignorance. Instead of exploring possible worlds where different 
actions are taken, they retrieve similar solutions to similar problems and try to adapt them. 

Thus, case-based reasoning, search and stochastic simulation are different ways of addressing different 
kinds of metacognitive problems.  We call the insight that many algorithms can be characterized by which 



common functions they choose in response to metacognitive problems the cognitive self-regulation 
principle. 

This analysis resembles Soar's [11] implementation of universal weak methods by reacting to impasses 
(analogous to metacognitive problems) by reasoning in problem spaces (analogous to alternate worlds). 
However, together with the common function and multiple implementation principles, the cognitive self- 
regulation principle motivates a significantly different architecture. 

4   Polyscheme 
The principles' from the last section motivate the design of a cognitive architecture called Polyscheme. In 
Polyscheme, algorithms can be implemented as strategies for focusing the attention of multiple modules. 
By combining strategies, we lay down hybrid focus traces (as described in the last section) and thus execute 
hybrids of algorithms implemented as focus control strategies. By using modules based on different data 
structures and algorithms, we enable hybrids of algorithms implemented as focus control strategies and the 
algorithms in the modules. By including modules that can sense the world and by tightly bounding the time 
each focus of attention takes, inference can constantly use and react to the latest information from the 
world. This section and the next elaborate these points. 

A Polyscheme system is comprised of a set of specialist, S, an attention buffer, A, and a focus manager 
FM. FM implements a get Next Focus () procedure that returns the next proposition to attend to. All the 
specialists must implement the following procedures: Store (), OpinionOn (), Matches () and 
ModifyFM(). The latter influences which propositions FM selects. It will be descrbied in more detail 
later in this section. 

At every time step, FM chooses a proposition for all the specialists to "focus on". Specifically, specialists 
give their opinions on the proposition's truth value, get all the other specialist's opinions on it, make their 
own inferences based on this new information and request other propositions for the FM to focus on. The 
reason all specialists focus on the same proposition at the same time is so that (1) no specialist makes 
inferences based on a truth value another specialist knows to be incorrect and (2) because even though a 
proposition is focused on because specialist S1 requested focus on it, it might become relevant for some 
other specialist S2. 

More formally, the Polyscheme control loop is: 

Do  forever: 
"Select the next focus." 

P = FM.getNextFocus() . 

"Get each specialists opinion on the focal prop." 
For all specialists, S : 

TV*. = S.opinionOri(P) 

"Inform specialists of each other's opinions." 
For all specialists, S: 

For each of the TV^ 
S. Store( P, TVA) 

"Allow specialists to influence the Focus Manager." 
For the focus queue, Q, and all specialists, S: 

S.modifyFM(P,Q) 

Once a focus of attention is chosen, all the specialists must focus on and therefore execute the same 
functions on it. Therefore, the FM's choice of attention fixation controls the flow of computation. We have 

1 There arc also several aspects of human psychology thai motivate the main aspects of Polyscheme. These arc described in [121 
and [13| 



experimented with several kinds of FMs, but will use a very simple FM based on a queue (FQ) to illustrate 
how attention selection can implement hybrids of many kinds of algorithms. Although achieving all our 
long-term objectives will almost certainly require a more sophisticated focus manager, a queue-based focus 
manager has been sufficient to achieve significant results and demonstrate the promise of the approach. 
Thus, in what follows, ModifyFMO takes as input a queue and modifies it. These modifications can 
involved adding elements, deleting them and changing their order. 

The principal means of interaction among specialists is the sharing of opinions in Polyscheme's control 
loop. All specialists are first asked their opinion on the focal proposition and then each learn about these 
opinions and process them. Therefore, specialists must wait for all of other specialists to finish offering 
their opinion before they proceed to use these opinions. This keeps specialists from making an inference 
on the opinion of one specialist that is contradicted by another specialist during the same time step2. If a 
proposition's truth value is inferred by a specialist during one iteration of the loop, other specialists will 
only learn about it if that proposition is focused on at a subsequent time step. 

To illustrate, consider a Polyscheme system that has a rule specialist with A -> B, a perception specialist 
that can see that A and C is true and a neural network specialist that classifies B and C as a situation 
represented by the proposition D. This licenses the following inferences: B is true (because A is true) and 
thus D is true (because B and C are classified as a situation where D is true). The following is a sketch of 
how information would flow through the focus of attention in Polyscheme to generate these inferences: 

1. The perception specialists puts A and C on the focus queue. 
o     Summary: The perception specialist requests that specialists focus on what it has seen to be 

true. 
2. At a later iteration of the control loop, A is chosen for focus. 

o     Summary: A is focused on, perception specialist says it is true, rule specialist infers that B 
and requests for focus on B. 

o    Taking opinions 
■ The perception specialist asserts its opinion that A is true, 

o     Storing opinions 
■ The rule specialist infers that B is true, 

o     Requesting focus 
■ The rule specialist puts B on the focus queue. 

3. At a later iteration, B is chosen for focus 
o    Summary: "B is focused on, rule specialist asserts it is true (because of the rule A->B), the 

neural network specialist commits this to memory." 
o    Taking opinions 

■ The rule specialist asserts its opinion that B is true. 
o     Storing opinion 

■ The neural network specialist stores in its memory that B is true, 
o     Requesting focus 

■ None of the specialist infer anything new, so the focus queue is not changed. 
4. At a later iteration of the control loop, C is chosen for focus. 

o    Summary: *C is focused on, perception specialist asserts it is true, neural network classifies 
this as situation D and requests that D be focused on. 

c     Taking opinions 
■ The perception specialist asserts its opinion that C is true, 

o    Storing opinions 
■ The neural network specialist stores in its memory that C is true and classifies this 

- This implies thai if a specialist finishes computing its opinion before other specialists, it must waste time waiting for them to 
finish. In practice, two factors mitigate this waste. First, when a system is run on one or a few processors, idle CPU time is allocated 
to specialists not done computing and there is little waste. Second, specialists are often designed to return their opinions very quickly 
This minimizes the time they spend waiting for other specialist to finish Such waste as there is. however, is compensated for. 
significantly, by the fact that specialists will never make inferences based on information another specialist knows to be false. Results 
reported later in this paper demonstrate that despite this waste, we can still achieve significant performance improvements 
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as a situation, D. 
o     Requesting focus 

■ The neural network specialist requests focus on D. 
5.    At a later iteration, D is chosen for foucs. 

o    Summary: "D is focused on, the neural network specialist asserts it is true and all the other 
specialists learn this, 

o    Taking opinions 
■ The neural network specialist asserts its opinion that D is true, 

o     Storing opinions 
■ All the specialist learn that D is true. 

This example illustrates that if a specialist makes an inference about proposition P at one time step, it is 
only learned by other specialists after P is focused on at a future time step. This is a relatively cumbersome 
process for making what intuitively appears to be a simple two-step inference. However, as we will 
demonstrate below, implementing inference thus through the focus of attention of multiple specialists can 
generate signficiant benefits. 

5   Algorithms as focus control strategies 
In this section, we show how to implement algorithms using focus management in Polyscheme and 
illustrate the integration this enables. We will concentrate mostly on algorithms from section II. In that 
section algorithms were described using common functions. In this section, specialists implement those 
common functions. We illustrate how focus control chooses which propositions those common functions 
operate on. In each case, a key component of the implementation is the how the Modify FM procedure is 
implemented. In the description of this procedure for each algorithm, we use italics to emphasize the role 
of a metacognitive problem (such as uncertainty, conflict or ignorance) in choosing the focus of attention. 
This illustrates how cognitive self-regulation (through the choice of attention fixation) is a common aspect 
of the flow of control in the algorithms we describe. 

First, let us consider how to implement a local search algorithm such as WalkSAT. We can implement 
pure WalkSAT using a ''constraint specialist". At any given time this specialist encodes a constraint C in 
conjunctive normal form. The specialist's functions operate as follows: 

Store (P, TV): P and TV are added as a clause to C. 

ModifyFM(P,Q): If C is satisfied in P's world, w, then add Satisfied (C,   E,   w) to Q. 
Otherwise, put the proposition P involved in the most clauses with conflicting: truth values at the front of 
the focus Q. 

OpinionOn (P): If P is of the form Satisfied (C, w) return T if C is satisfied in w, otherwise 
return U. 

LL can be executed by a different kind of constraint specialist.   Storing a proposition performs 
elaboration. 

Store (P, TV): P and TV are added as a clause to C; perform the DPLL elaboration step on C. 

Modi f y FM (P,Q): If Cis satisfied in P's world, w, then add Satisfied (C,   E,   w) to Q. 
Otherwise, randomly choose a proposition P whose truth value remains uncertain and put it, and its 
negation, at the front of Q. (It is common to improve DPLL with variable selection heuristics. There is 
no obstacle to incorporating these heuristics into Modif yFM.) jk9 

OpinionOn (P): If P is of the form Satisfied(C,w) return T ifC is satisfied in w. otherwise 
return U. 

9 



A system with repeated experience in similar environments will have made many inferences and solved 
many problems. One can speed it up using a form of case-based reasoning. A       "case       specialist" 
remembers previous states of the worlds and the relations among objects in those situations.    In a new 
situation, it is capable of finding similarities with the past and suggesting cases relevant to the present. 

More specifically: 

Store (P, TV).   (P,TV) is added to memory. 

Modif yFM (P, Q). If P's truth value is uncertain and it is involved in a structure (i.e., a set of 
related propositions) that is highly similar (above some threshold) to a to a proposition PI in a 
previously encountered structure, then transform the old case into propositions that use the objects and 
times in the current situation and put those propositions on the queue. 

Three questions raised by this approach to case-based reasoning involve how the relevant features to a 
case are focused on, how cases are stored in memory and how similarity between cases is computed. The 
last two questions are beyond the scope of the paper because our goal here is to provide a framework for 
integrating computational methods, not determining which specific methods are worth integrating. As for 
the first question, some of the features of a case must be focused on because they were perceived or 
inferred by other specialists. These will cue a case. The ModifyFM procedure described above would then 
have the result of adding focus for the rest of the features. 

As an example of integration using focus traces, consider that case-based reasoning and WalkSAT 
integrate easily. WalkSAT proceeds as it normally would, flipping the truth value of one proposition at a 
time and focusing on it. When the case specialist finds a situation in the past that is sufficiently similar to 
this one, it essentially flips several truth values at once, hopefully getting WalkSAT much closer to a 
solution. The brittleness of CBR is ameliorated by the fact that whatever inconsistencies there are between 
the past case and the current situation can be resolved by continued search by WalkSAT. 

Finally, for environments that are changing and/or are perceptible only through noisy sensors, every step 

Figure 2.   The robot tracking problem.  The robot in the foreground of (a) is tasked to track the robot in the distant 
bright of (a).  The tracked robot disappears (b) behind an occluder and a robot with the exact appearance emerges (c) 

from the left of the occluder. Polyscheme infers the two are identical and moves the tracking robot towards the visible 
robot. When (d) it sees an obstacle to robot motion behind the occluder, it infers the two robots are different. 



of case-based reasoning and WalkSAT should be influenced by information from these sensors. 
Adding a "perception specialist" achieves this: 

Modif yFM (P, Q). If sensors perceive that a proposition X has changed truth value, put X on the 
beginning of Q. 

OpinionOn (P). Returns the truth value ? had the last time it perceived it or U if you have never 
perceived it. 

Thus, during any attention fixation caused by the constraint or case specialist, if new information about a 
proposition P is perceived, the perception specialist will ask the focus manger to focus on it. When 
Polyscheme does focus on P, the perception specialist will take the appropriate stance on it. The case and 
constraint specialists will then learn about it through their Store () procedures and incorporate the 
information into their case-matching and search, respectively. 

These examples illustrate that algorithms from very different computational frameworks can be 
integrated using the same "'computational building blocks", i.e., the focus of attention of a set of modules. 

6   The benefits of focus trace integration 
We will describe how Polyscheme enables the best characteristics of multiple diverse computational 
methods to be combined by describing a working mobile robot [14] controlled by Polyscheme. The robot's 
goal (illustrated in Figure 2) was to keep track of and follow another robot as it moved about and 
occasionally became occluded by other objects. This task requires many of the characteristics of intelligent 
systems we described in the introduction. The reasoning and planning problem was difficult. Because the 
actions of the robots had side effects and because there was incomplete information (because of occlusion), 
traditional planners could not be used. Formulating the physical constraints on objects (e.g., they do not 
pass through each other, gravity, etc.) in this domain in a SAT solver was prohibitive. Memory demands 
grew exponentially with spatial resolution, exhausting the memory of typical desktop computers with grid 
sizes around 5x5x5. Further, although operating in an environment while taking into account physical laws 
and potentially occluded objects is well beyond the reach of pure reactive systems, the positive 
characteristics of these systems were required. The environment was constantly changing, so the robot had 
incomplete information and it therefore needed to be reactive and flexible enough to incorporate new 
information from its sensors into its planning and inference. 

We briefly describe the Polyscheme system that controlled the robot. The focus manager was a 
modification of the queue scheme described above. The main modification was that propositions in the 
queue were associated with "satisfaction conditions" that would cause the proposition to be removed from 
the queue when they were met. For example, if proposition PI was put on the queue to help infer if P2 
was true, then if the truth of P2 is determined, there is no longer a need to focus on PI and it is removed. 
The specialists included a perception specialist that detected the location and type of objects in the 
environment. A physical constraint specialist kept track of physical constraints and a path specialist 
included a library of "path scripts" that described paths robots typically take. 

We can now use this robot to help describe how Polyscheme enables systems that exhibit the 
characteristics of algorithms based on diverse computational formalisms. 

Generality and flexibility. Methods such as local search, backtracking search and stochastic 
simulation make inferences, find plans or solve constraints in a very wide variety of domains. This makes 
them general and flexible in that when a situation changes and is formulated for these algorithms, they will 
deal with them accordingly. We have already described how to implement such algorithms within 
Polyscheme. In our robot, these kinds of algorithms were used to maintain the physical constraints 
described above. The benefit of doing so is that the system can also exhibit the following characteristics, 
which are not often exhibited in pure versions of these general algorithms when operating on many classes 
of problems. 

Speed. General algorithms tend to be slow on larger problems because the state spaces they explore 
grow very quickly as a problem grows. "Structured" reasoning and planning algorithms based on frames or 
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scripts do not have this problem since they do not generally search state spaces but instead make inferences 
or solve problems using large structured representations (i.e., frames, scripts or cases). When these 
algorithms are implemented in Poiyscheme together with more general and flexible algorithms, the best 
characteristics of each can be exhibited in the same system. In our robot, Poiyscheme could find a 
continuous path between two sightings of a tracked object more quickly than pure search because of its 
library of path scripts. When a script was retrieved that did not completely match the existing situation, the 
constraint system would detect this contradiction and this would initiate a search for a model for changes to 
the script that would be more consistent with the situation. While full search was always available, the 
script retrieval effectively meant that search began in a state much closer to the correct model of the world. 
Thus, the speed of structured approaches was combined with the generality and flexibility of search-based 
methods. 

Reactivity. Environments whose states change and which are sensed through imperfect sensors require 
systems to be able to quickly update their plans and inferences upon new information. Reactivity can be 
achieved using Poiyscheme by mandating each focus of attention be quick and by including sensor 
specialists. This guarantees that little inference will happen before new information is sensed. When our 
robot moved to a different location and saw objects that were formerly occluded, the perception specialist 
requested that all the other specialists focus on this information immediately. When they did, the constraint 
and path specialists were able to update their inferences and plans according!) 

The ability of the robot to engage in complex reasoning and planning while moving about in a changing 
world demonstrates that creating hybrids of algorithms in Poiyscheme can enable a combination of 
characteristics not possible given existing individual methods alone. 

7   Evaluations and implemented systems 
We used Poiyscheme to create several systems that illustrate the benefits of this approach to hybrid 
algorithm execution. These benefits can be measured quantitatively and they can be illustrated by systems 
that provide qualitatively new functionality. 

7.1   Quantitative evaluations 
To confirm that Poiyscheme's integration of multiple data structures and algorithms to constrain inference 
could lead to computational speedups, we performed quantitative evaluations on path planning and spatial 
reasoning problems. 

Path Planning. Finding a path through a graph is an important problem in several fields, especially robot 
motion planning. It is common to discretize a continuous space into a graph and use an algorithm such as 
A* [15] to find the optimal path through the graph. This approach requires several assumptions to be made 
that do not obtain in many real-world environments. The most important of these assumptions involve 
change. For example, these algorithms typically do not enable planning to account for a change in a 
robot's abilities. If a robot that can fit through a door picks up and caries a large object, it may no longer be 
able to move through the door. Thus the link between the regions the door connects must be severed in the 
graph. However, most path planning algorithms assume a fixed graph. Another example of change that 
traditional motion planning algorithms do not account for involves changes in the environment that do not 
involve the robot. For example, if a door closes automatically during certain temporal intervals, then the 
graph representing the connectivity of the regions must change. (Even path planning algorithms such as 
Ariadne [16] that use multiple kinds of algorithms to improve search do not deal with change through time 
of this sort.) For reasons such as these, dedicated motion planning algorithms cannot work in many real- 
world situations. 

One solution to addressing the problem of action effects and change is to formulate path planning as a 
weighted SAT problem. Side effects and changes of state would be easy to formulate as SAT constrains. 
However, to represent that states of objects can change over time, SAT encodings of such problems must 
include a copy of each state variable for every time step. For example, it is not sufficient to have a 
doorllOpen variable. One must have doorl70penAtTimel, doorl70penAtTime2, etc. variables. Thus, the 
size of the required SAT formulation would be very large for situations that extend over many time steps. 
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However, the execution time of SAT algorithms, as will be illustrated below, grows exponentially with the 
number of variables. Thus, for problems with many time steps, SAT encodings are not an efficient means 
of planning paths. 

One solution to this problem is to introduce temporal intervals. Rather than write that door 17 is 
open at times 3,4,5,6.7,8,9,10 and 11, one can write that door 17 is open over the interval (3,11). However, 
SAT encodings would require that every possible interval be represented. Thus, for example, a domain 
with 100 time points entails tens of thousands of temporal intervals with those times as end points. Further, 
this formulation would not reduce the search space. To move from A to B, the search algorithm would 
have to consider the world where the motion occurred at time 1, the world where it occurred at time 2, and 
so on, even though in most cases the specific time is irrelevant. The root cause of the problem is that the 
SAT formulation requires all constraints to be grounded propositionally and that it cannot reason over 
indefinite objects. If they could, then they could plan under the assumption, e.g., that the robot moved from 
A to B at "indefinite" time / and only reason about the specific bounds on / if they become relevant. 

To enable reasoning over new objects we, created a system for "generative" SAT (GenSAT) solving 
called GenDPLL [17]. It implements DPLL in the manner outlined in Section 3. However, rather than 
encoding constraints as propositional SAT problems, it encoded them using first-order constraints. These 
constraints were stored in a "formula specialist" that used a rule matching algorithm to perform the DPLL 
elaboration step. 

This enables intervals to be represented as "indefinite" times that are constrained between two initially 
unknown points. For example, the following constraint encodes that if an object moves from being in A at 
time a to being in non-adjacent B at b, it must have traveled to an intermediate adjacent location at some 
time point. 

Loci?x,?p,. ? tx) A LocOx,?p2.? t2) A r-SameOp^.?ft) 
AdjacentOft. ?p^) A MeetsOtx.? tx).7p*. : 

Thus, indefinite times eliminate the need to consider all the possible endpoints of /, significantly 
reducing the search space. 

We tested the increasing efficiency so enabled in a robot path-planning domain. We presented 
Polyscheme and planners based on modern weighted SAT solvers a two-dimensional grid and two end 
points. The grid contained obstacles whose locations changed over time and thus, for the reasoned 
mentioned above require the capability to reason about change. The goal of these systems was to find the 
shortest possible path between points. The fact that objects could change properties and locations made 
many common path planners unusable for this domain and, for the reasons mentioned earlier in the section, 
made this a very hard search problem for conventional SAT algorithms. Because we desired the abilitv to 
include constraints that were not purely about paths we could not simply consider time a third dimension 
and use a three-dimensional path planner. 

We compared Polyscheme's performance against LazySAT [18] and MiniMaxSAT [19]. LazySAT was 
used because it is the only weighted MaxSAT solver that lazily instantiates constraints. LazySAT uses a 
WalkSAT-like [5] local-search algorithm. Since such algorithms in many cases perform worse than 
systematic solvers, we also evaluated MiniMaxSAT's performance. MiniMaxSAT is a weighted SAT 
solver based on MiniSAT, which is in turn an extension of MiniSAT. MiniSAT, the winner of the 2006 
SAT Competition, is widely regarded as one of the best available SAT solvers. 
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Figure 3. The performance of Polyscheme. 
MiniMaxSat and LazySat on a path planning 
problem. 

As Figure 3 illustrates, the performance 
of GenDPLL was approximately constant 
in the number of time points and 
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problems with more than approximately 5 



time points and MiniMaxSAT with more than 35 time points. The graph reflects CPU times and thus 
demonstrates that even though Polyscheme involves significantly more computation for any step in search, 
that its ability to use multiple data structures and algorithms to prune search often able to significantly 
compensate for this overhead. 

Averages of 10 runs for each number of time steps were used in forming the graph in order to average 
away changes in performance due to background processes on our computer or the specific problem 
instances. Since LazySAT is not guaranteed to halt with an optimal solution, the times displayed indicate 
the speed with which it found a path that did not break hard constraints (e.g., that robots cannot pass 
through solid objects). Although LazySAT lazily instantiates constraints, it does not reason over unknown 
objects and thus achieves neither reductions in the number of explored models nor the consequent speedups 
that are afforded by the GenSAT interval formulation. In the indefinite interval formulation, merely adding 
time steps does not change the number of models that need to be considered. 

These results demonstrate that by using Polyscheme to create a hybrid of a SAT-solving algorithm 
(GenDPLL) and a rule matcher, that problems which were not solvable by these or other methods alone can 
be solved efficiently. 

Spatial reasoning. Domains that involve spatial relations can pose a problem for inference algorithms 
because of the number of points they involve. A 100x100 grid, for example, contains 10,000 points. If one 
is uncertain about the location of A and only knows that point B is within 10 cells away from B, then there 
are on the order of 1 million possible configurations of A and B in that grid that are consistent with this 
knowledge. 

There are many "diagrammatic" reasoning systems that enable reasoning with such spatial constraints. 
They tend to be more efficient than, for example, SAT solvers on such problems in part because diagrams 
more compactly represent spatial relations. Existing diagrammatic reasoning systems are however quite 
limited in their ability to also reason over non spatial constraints, and no such systems offer the generality, 
soundness and completeness of, SAT solvers. 

To address this problem, we created a hybrid system intended to provide the benefits of SAT methods 
while enabling considerably more efficient inference on problems with spatial relations. The system was 
able to take input in the same form as other SAT solvers, except that some of the constraints could involve 
(possibly metric) spatial relations. Examples include: Near(a,b,10) ("a is within ten units of b), Left(b,c) 
and Above(a,c). Constraints could mix spatial and non-spatial relations so that a it would be possible to 
represent a constraints to the effect of, "Dogs on a leash are near the person holding the leash". Given such 
constraints as input, the system finds models that satisfy them, if they exist 

This system, called DPLL-S, was based on a weighted SAT solver similar to the one described in the last 
section. In addition, the system included a diagram component that kept track of spatial relations and used 
"possibility spaces'* [20] to compactly represent relations. Thus, rather than needing to represent every 
specific possible location of an object, it could represent the region (i.e., possibility space) where the object 
could potentially be located. This representation would enable the diagram component to rule out many 
possible object locations very quickly. For example, if A is more than 70 units from B and C is within 10 
units of B, then, using standard grid algorithms, one can very quickly infer using possibility spaces that A is 
not near C. The only way to rule out that possibility using a standard SAT solver would be to search over 
potentially millions of possible configurations of A, B and C. The diagram specialist can therefore 
dramatically reduce the number of possibilities explored during search. 
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Figure 4. The performance of DPLL-S vs. MiniMaxSAT. 

To measure the impact of this hybridized approach, we tested the system on problem instances of 
varying size. Since a criticism of many diagrammatic reasoning systems has been that they are tested only 
on problems that suit them, we randomly generated problems. We then solved these problems using 
MiniMaxSAT and our hybrid system. On problems with smaller grid sizes, MiniMaxSAT outperformed 
the hybrid system. However, with increasing grid sizes, the benefits of reasoning with possibility spaces 
increased and the hybrid system significantly surpassed MiniMaxSAT's performance. Figure 4 shows 
these results. "Near = >T in the legend indicates that problems run had the no Near predicate had an 
argument greater than n. As n grows, there are generally more possible configurations that satisfy a 
constraint and thus performance deteriorated. 

7.2   Computational Complexity of Search 
The path planning and spatial reasoning problems we have been discussing have a high degree of 
computational complexity. We make no claim that our approach somehow changes the complexity class of 
these problems. Nor do we claim to have surmounted "no-free lunch'' [21] theorems, which hold that "any 
two algorithms are equivalent when their performance is averaged across all possible problems" [22]. It is 
however very common for algorithmic improvements that do not change complexity characteristics to 
nevertheless make an approach tractable on problems that had been impossible before.  Innovations such as 
stochastic local search [23] and clause learning [6] have, for example, made SAT solvers usable on a wide 
range of new problems without altering the fact that SAT solving is an NP-complete problem. Thought the 
technical details are quite different. Polyscheme follows in this tradition. 

Further, the performance gains mentioned here were specific to domains with spatial and temporal 
relations. This is to be expected since the gains were achieved by hybridizing search with specialized 
spatial and temporal reasoning methods. While the specificity of these improvements is a limitation of 
these systems, there is a wide body of research in cognitive science [24] indicating that reasoning in many 
domains can be mapped onto reasoning about set of relations such as time and space. Confirming the 
potential breadth of application of such specializations is a topic for future research. 

Finally, Polyscheme involves a significant amount of overhead that requires considerably more 
computation per state explored during search. This is confirmed by our quantitative evaluations. However, 
in the case of path planning, we showed that the new problem formulation Polyscheme enables 
significantly reduces the search space and hence the CPU time needed as problems involved larger time 
frames. The spatial reasoning search showed how a diagram module could significantly reduce the number 
of states explored. Since all our evaluations measured CPU time, they demonstrate that in many cases 
hybridized search can outperform deeper search using a single algorithm. 
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7.3   Systems with new functionality 
Although quantitative evaluations help measure and precisely characterize specific advances enabled, our 
ultimate goal in this work is to enable intelligent systems with functionality that formerly had not been 
straightforward to create, or which solved problems that could not be solved (in theory, not just efficiently) 
in other frameworks. 

The principle way to demonstrate that Polyscheme can enable this is to actually build such systems. The 
robot from the last section is a prime example. It can react to changes while making inferences and finding 
plans that purely reactive systems cannot and that conventional inference and reasoning algorithms achieve 
only (as we described in the SAT example above) on very small problem scales. 

A heterogeneous database retrieval system [25] implemented in Polyscheme also illustrates its benefits. 
This system makes sound and complete inferences over heterogeneous sources of computation and 
information. It implements resolution theorem proving using common functions such as forward inference, 
subgoaling, and identity. Each of these operations is implemented in specialists based on representations 
such as neural networks, production rules, geospatial coordinates and relational databases. If these modules 
meet certain conditions (which in practice are easy to confirm), the total system's inference is sound and 
complete. This system demonstrates how hybridizing algorithms provides both the benefits of logic 
programming (provable soundness and completeness) and the efficiency of special representations (such as 
those from neural networks and relational databases). 

Finally, the GenSAT language and GenDPLL algorithm we mentioned in the motion planning section 
overcome some severe difficulties that arise in domains with unknown objects. Languages, such as 
GenSAT, that license the inference of objects unknown before inference can lead to models with infinite 
numbers of objects. For example, a constraint to the effect that "all mammals have a mother' and "a 
person cannot be their own ancestor" require a model with infinite numbers of ancestors for any particular 
mammal. As another example of finite theories with infinite models, many context-free grammars license 
infinite numbers of derivations. Because traditional SAT solvers require all objects to be known in advance 
- this is true even of lazy sat solvers such as LazySAT - they cannot solve many problems in such 
domains. In [17], we prove that hybridizing rule-matching with weighted constraint solving in GenDPLL 
enables models to be found of GenSAT theories even in many conditions where there are infinitely many 
models with infinite numbers of unknown objects. In [26], we show how to use GenDPLL to provide 
parses for probabilistic context-free grammars, even in cases where a grammar has infinite numbers of 
derivations. Since GenSAT can encode an extremely wide variety of constraints, this result enables 
linguistic knowledge (in the form of PCFG constraintsO and non-linguistic knowledge to jointly constrain 
interpretation during parsing. The absence of such an ability has been a serious obstacle to the use of 
context to disambiguate language. 

The heterogeneous database retrieval and GenSAT results had been beyond the theoretical reach of 
existing approaches. No approach had previously enabled sound and complete answers to queries over 
information in such a wide variety of formalisms and no other approach had enabled reasoning over 
constraints as general and flexible as those in SAT to be jointly reasoned over with grammars that had 
infinite derivations. These results thus demonstrate that executing hybrid algorithm through a focus of 
attention in Polyscheme not only can speed inference, but also enable inference in situations that had 
heretofore been theoretically intractable. 

8   Other approaches to integration 
Most approaches to integrating algorithms and/or their characteristics into a single system have taken a 
reductive, modular or "fixed" hybrid approach. Reductive approaches tend to implement an algorithm or 
solve problems by a reduction to another approach. This often consigns such systems to the limitations of 
the computational formalism or method being reduced to. For example, reducing a first-order probabilistic 
logic reasoning problem to a graphical model belief propagation problem [27] means that one is still 
limited by the propositional representation and scalability characteristics of belief propagation inference 
algorithms. Modular architectures for integration tend to enable modules based on different data structures 
and algorithms to communicate and/or cooperate. Normally the only way to add an algorithm to such a 
system is to add a module based on that algorithm.  Polyscheme enables this kind of integration, but also 
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enables algorithms to be executed through the focus of attention. This allows every single step of every 
algorithm to be executed using many data structures and algorithms and thus enables a much more 
thorough integration of algorithms. Fixed hybrid approaches such as Clarion [28] and ACT-R [29, 30] 
create hybrids between a few specific algorithms. Both include production systems that use reinforcement- 
learning mechanisms for conflict resolution, but do not enable such close interaction between other 
algorithms implemented in those systems. 

Polyscheme differs from many cognitive architectures in being primarily inferential and not procedural. 
Most architectures, e.g.. Icarus [31], Soar [11 ], Epic [32] and ACT-R choose an action at every step. These 
actions are actual physical actions or operations on data structures in memory. In Polyscheme, at every 
time step, specialists do not take or propose actions, but instead take stances on the truth value of 
propositions and suggest propositions to attend to. A consequence is that Polyscheme includes mechanisms 
for communication and sharing information about the truth of propositions that make it much easier to 
implement many reasoning and inference algorithms. 

A focus of attention is a very important part of ACT-R and Rao's work [33] on visual routines. 
However, in ACT-R, the focus of attention is not used to implement algorithms and in neither case is it 
feasible (because of the absence of mechanisms involving truth values and alternate worlds) to implement 
and integrate reasoning and inference algorithms using this sort of focus of attention mechanism. 

Self-adaptive system architectures (e.g., [34, 35]) share some features of this approach. They often 
contain multiple algorithms based on different methods. Further, these architectures often contain some 
form of self-monitoring that detects problems among system components and reacts accordingly. This is in 
some ways similar the role of choosing focus to deal with metacognitive problems in Polyscheme. 
However, these systems typically do not contain a notion of a focus of attention that all modules process 
simultaneously and they do not require all components to be able to simulate alternate worlds. Thus, while 
nothing prevents these systems from including components that implement inference algorithms inside 
modules, they cannot implement these algorithms as the result of a guided focus of attention that involves 
all modules in every step of inference. 

Polyscheme's focus of attention is superficially reminiscent of blackboard systems (e.g., [36]) insofar as 
it is a shared entity multiple modules access. However, the two have numerous and profound differences: 
the focus of attention in Polyscheme is tiny; Polyscheme has no shared-memory among modules while 
blackboards are such shared memory; Polyscheme modules can have arbitrarily large, varied and persistent 
memories while in many blackboard systems, the blackboard is the main form of memory; blackboard 
systems have no straightforward way of exploring alternate states of the world; and unlike the focus of 
attention in Polyscheme, modules in blackboard systems generally do not synchronize their operation. 
Most importantly, the lack of shared memory frees modules in Polyscheme to use a much more diverse 
array of representational formalisms. 

Finally, like the current approach, [37] proposes that many solutions to human intelligence arises from 
the interaction of specialized processors and explores the value of a focus of attention [38]. While it does 
not implement inference algorithms using a focus of attention and simulated worlds, it does provide a 
means of learning interactions among modules. In Polyscheme, at present, these interactions are 
established by the system designers, though it is likely that additional benefits would result by using such 
methods to influence the interaction of specialists in Polyscheme. 

9   Technical Conclusions 
The goal of this paper has been a framework for creating a single system that can exhibit the best 
characteristics of algorithms based on different computational formalisms. Our approach has been to create 
a cognitive architecture called Polyscheme that can execute hybrids of these algorithms. Polyscheme 
enables two kinds of hybrids. First, a Polyscheme system can include modules based on arbitrarily 
different algorithms and data structures so long as they implement the common functions. Second, and 
most originally, Polyscheme can execute algorithms by guiding the "focus of attention" of these modules. 
Systems created using Polyscheme demonstrate that integration through a focus of attention enables 
systems that can make inferences and solve problems in situations beyond the reach of existing individual 
computational methods. 
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10 Transitions 

The project led to three transitions. Much of the technology developed here was key to 
the award of grants for the following three projects:  1. A MURI award for a project 
headed by Nicholas Cassimatis. the PI for the present project, to use these user modeling 
methods to improve human-computer interactions, 2. A DARPA SIBR with TracLabs 
that used these methods to monitor the operation of robots. 3. An ONR SIBR also with 
TracLabs that used these methods to greatly improve the ability of robots and understand 
the goals of the users they were interacting with. 

The total amount of funding for these projects was about $8,000,000. 
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